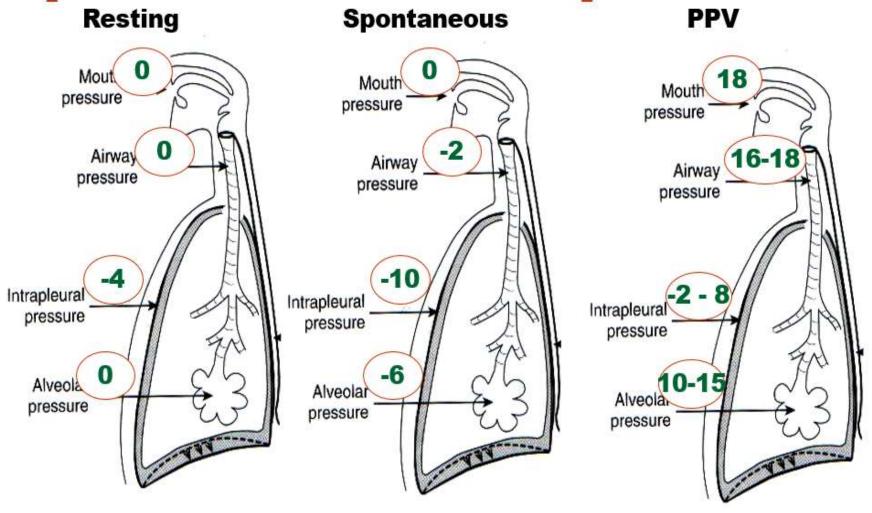


Introduction to Mechanical Ventilation

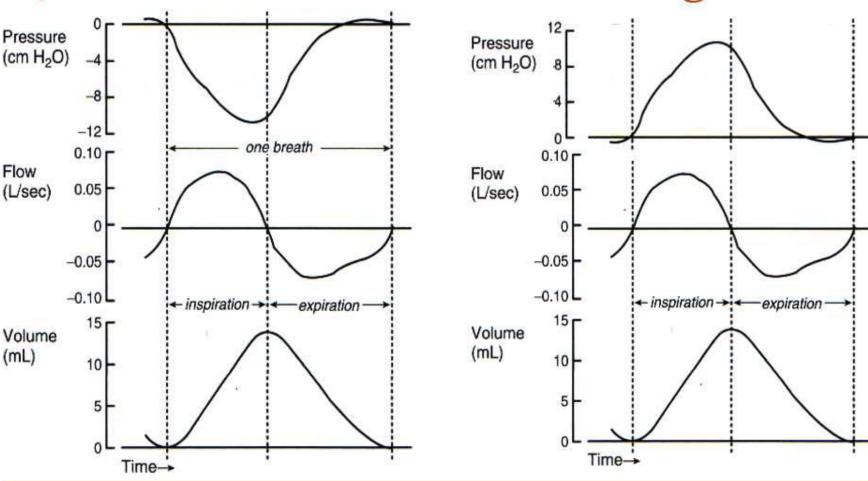
Part-1

Elsayed Abdelkreem

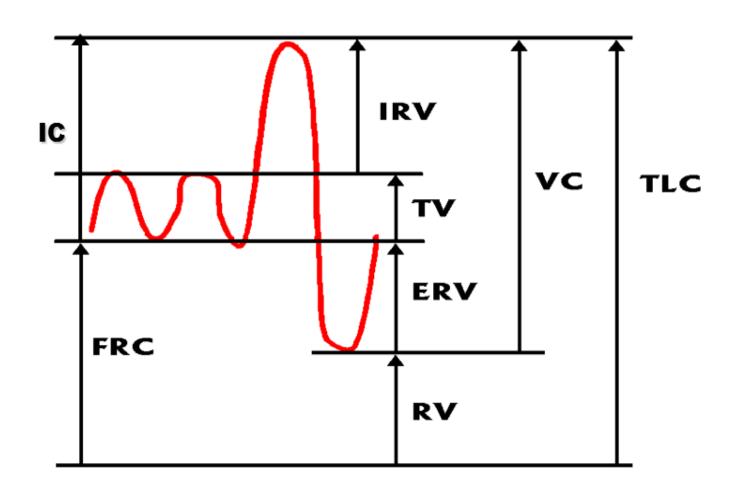
Lecturer of Pediatrics, Sohag University

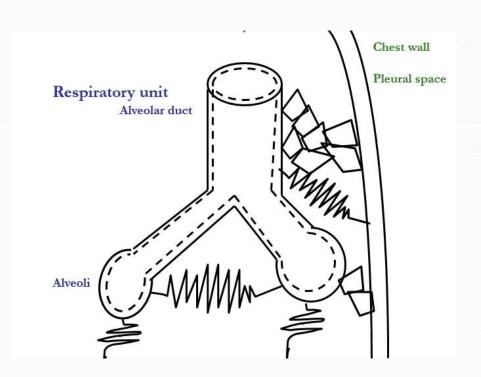

Overview of topics

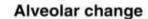
- 1. Introduction (mechanics and gas exchange)
- 2. Ventilator Settings (disease specific)
- 3. Ventilator types and modes

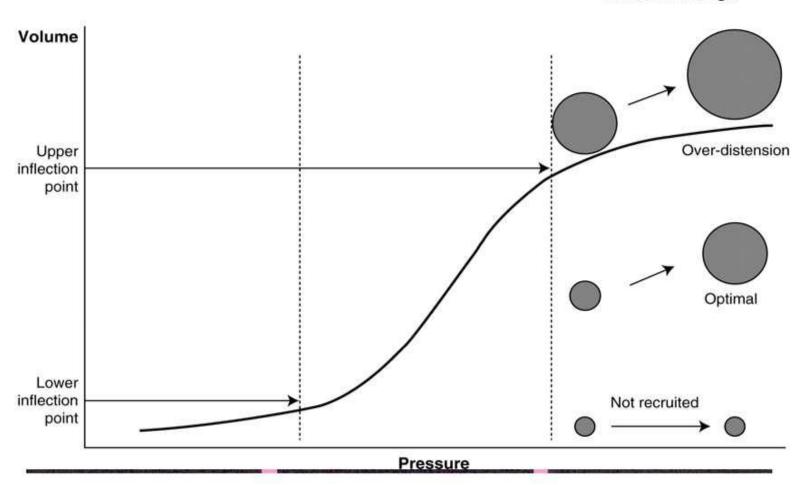

Respiration: Simple facts first! Control **Energy** (Central The system? (Nutrition) and Gas Pump Peripheral) **Breathing** (Muscles and Chest Wall) **Pulmonary Passages** mechanics (Alloway flow) Gas reservoir Externa (Lung Volumes) **Gas Diffusion** Gas exchange portion & Exchange (Oxygenation and CO2 elimination) laws Transporter (Blood Gases) Perfusion & **02** delivery Interna **02** consumption (COP& Hb (Tissue biologic oxidation) level)

- Pressure (elastance, resistance)
- Volume
- Flow
- Time

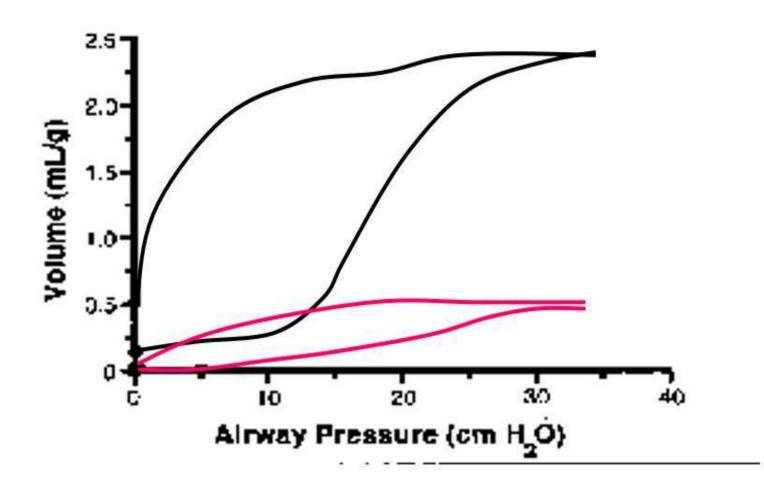

Spontaneous vs. mechanical inspiration


Spontaneous vs. mechanical breathing


Respiratory Volumes



- Compliance: Inverse of elastance
- Change in volume per unit change in pressure



Compliance (upper and lower inclination points)

Compliance (in HMD)

Resistance = Pressure/Flow

Resistance (law)

Poiseuille's law

$$P = F8nI/ \pi r^4$$

```
(F= flow; n = viscosity; I = length; r = radius)
(For turbulent flow: I/r5)
```

- Pressure needed to achieve given flow (to overcome Resistance) in a tubing system is
 - Directly proportional to
 - Flow rate
 - Gas viscosity,
 - Length of the airway
 - and inversely proportional to
 - The fourth power of the radius

Values

Parameter	Unit	Adult	Newborn	HMD	MAS
Pulmonary compliance	mL/cm H ₂ O/kg	2.5-3	2-2.5	<0.6	<1.0
Chest wall compliance	mL/cm H ₂ O/kg	<1	>4	-	_
Pulmonary resistance	cm H ₂ O/L/sec	1-2	20-40	40	>150
Resistive work	g-cm/kg	<10	20-30	30-40	>40

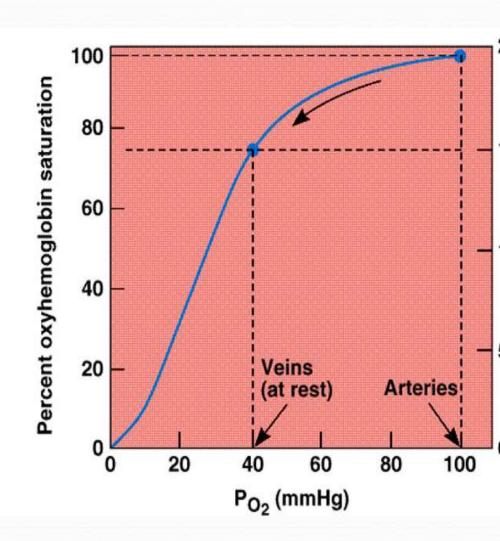
Time constant

Compliance × Resistance

Healthy term neonate:

$$\Box$$
 C = 0.004 L/cm H₂O; R = 30 cm H₂O/L/sec

 $T = 0.004 \times 30 = 0.12 \text{ sec}$


Time constants	Ti	% equilibration		
1	0.12	63		
2	0.24	86		
3	0.36	95		
5	0.60	99		

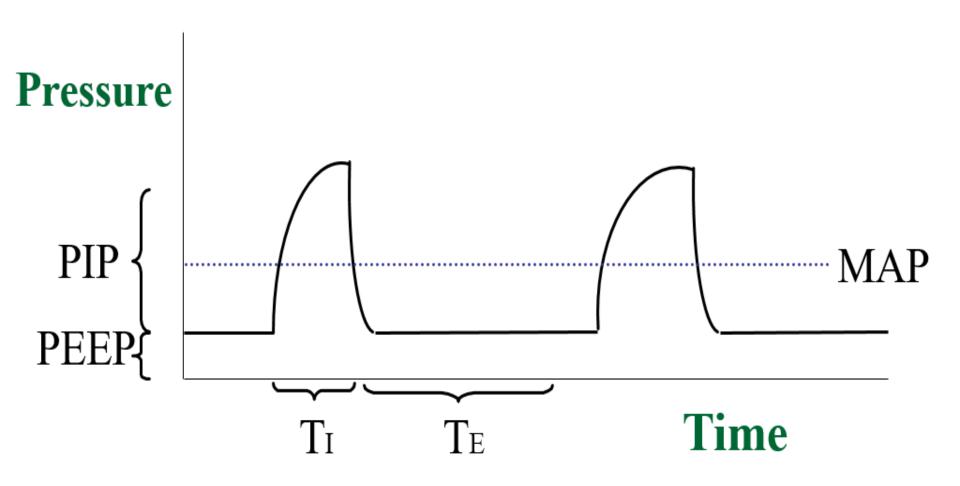
RDS: Shorter time constant

Gas Exchange

Gases transport in the blood

- Oxygen transport in the blood
 - □ HB-bound O2
 - Dissolved in plasma
- Carbon dioxide transport in the blood
 - □ Bicarbonate (85%)
 - Dissolved in plasma (5%)
 - Carried inside red blood cells on hemoglobin as carbamate (at different binding sites than those of O2) (10%)

Hypoxemia


Pathophysiological mechanisms

Ventilation-Perfusion mismatch (most common)
 Mild RDS, Pneumonia, Aspiration/Atelectasis

- Alveolar hypoventilation
- Right-to-left shunt
- Diffusion limitation

Oxygenation

Oxygenation during MV (MAP manipulation)

Hypercapnia

Pathophysiological mechanisms

- HypoventilationCentral hypoventilationObstruction of main airways
- Increased dead space ventilation
 Disease state (hypoperfused lung)
 Iatrogenic (long ETT, ventilator circuit)

Intervention

Overview of topics

- 1. Introduction (mechanics and gas exchange)
- 2. Ventilator Settings (disease specific)
- 3. Ventilator types and modes

Ventilators parameters (PCV)

Adjust, Monitor and Calculate

- Adjusted
 - -PIP
 - PEEP
 - -Ti
 - -Rate (Te)
 - ± I:E ratio
 - Flow
 - -FiO2
 - Trigger
 - ±Targeted VT

- •Monitored(alarms)
 - ■PIP
 - PEEP
 - MAP
 - •FiO2
 - Rate (total)
 - ±Rate (spont.)
 - *±VT (insp-Exp)
 - *±MV (total-spont)

- Calculated
 - I:E ratio
 - ■AP
 - T inflation
 - •C
 - ■R
 - TC
 - Others

Disease specific initial settings

Disease	Compliance mi/cm H ₂ O	Resistance cm H ₂ O/ml/s	Time Constant (s)	FRC (ml/kg)	V∕Q Matching	Work	
Normal term	4-6	20-40	0.25	Source: manual of neonatal care			
RDS	11	-	11	1	1/11	1	
Meconium aspiration	- /↓	†/	1	1/11	t t	1	
BPD	1/↓	† †	1	11	11/1	11	
Air leak	1	- ↑	- ↑	11	1/11	11	
VLBW apnea	ı		11	-/ ↓	! /	-/ 1	

^{1 =} increase; 1 = decrease; - = little or no change; / = either/or.

Initial setting

There is no standard setting for all cases and even for all newborns with the same disease.

Adjusting every starting setting to the response of the baby and keeping it adjusted with the changes in the condition is the key of success of mechanical ventilation

